כל מה שרצית לדעת על תורת השדות הקוונטית:
תורת השדות הקוונטית היא הבסיס התאורטי לפיזיקת החלקיקים ולתיאור מלא של פיזיקה של חומר מעובה ומערכות רבות חלקיקים.
תורת השדות הקוונטית צמחה מתוך תורת הקוונטים החל משנות ה-20 של המאה ה-20, עקב הצורך בתיאור מערכות רבות חלקיקים ותגובות בין חלקיקים, בפרט תגובות שבהן חלקיקים נוצרים ומתפרקים, שלא ניתנות לתיאור בתורת הקוונטים.
היישום הראשון של התורה היה תיאור אינטראקציה בין פוטונים לחומר, שהוביל לתורת השדות הקוונטית הראשונה והמדויקת ביותר עד היום שהיא אלקטרודינמיקה קוונטית.
במודל הסטנדרטי של החלקיקים היסודיים, מתארים בעזרת תורת השדות את מקורם ותכונותיהם של כל כוחות היסוד בטבע מלבד כבידה, הנובעות מסימטריות מיוחדות.
התורה מתארת את הפיזיקה של תופעות בקנה מידה קטן ביותר, עד מיליארדית של מיליארדית המטר (אלפית מגודלו של גרעין האטום).
התורה מתארת את התנהגותם של החלקיקים היסודיים והמורכבים (כמו אלקטרונים, פוטונים ואבני הבניין של גרעין האטום), ומתארת את הכוח האלקטרומגנטי, הכוח הגרעיני החזק והכוח הגרעיני החלש.
שדה קוונטי מייצג סוג של חלקיקים, והוא גודל התלוי במרחב ובזמן.
חלקיק בתורת השדות הוא עירור, או מצב קוונטי של השדה, ויש לו מיקום, תנע, אנרגיה ותכונות אחרות.
להסבר על השדות (סוגי החלקיקים היסודיים) הידועים בטבע ותכונותיהם, ראו המודל הסטנדרטי.
תורת שדות קוונטיים נבנית מסימטריות כיול ומשדות קוונטיים, שקובעים את הלגרנז'יאן של התורה, שהוא התלות של האנרגיה בשדות ונגזרותיהן, וממנו נגזרים כל שאר הגדלים והפתרונות.
בנוסף, סימטריות כיול (סימטריות שתלויות במיקום במרחב) יוצרות שדות חדשים, שנקראים שדות כיול.
באמצעות תורת השדות ניתן לחשב את תוצאות הפיזור מהתנגשות שני חלקיקים במאיץ חלקיקים, שהם מקור המידע המקיף ביותר על חלקיקים יסודיים, ומתוך תוצאות אלו למצוא את מבנה החומר הבסיסי ביותר (החלקיקים היסודיים), ואת הסימטריות הבסיסיות.
תורת שדות קוונטית גם מאפשרת לחשב את תכונותיהם של חלקיקים מורכבים כמו אטומים.
קיימות שיטות חישוב רבות בתורה, שכן אין שיטה אחת שמאפשרת פתרון כללי מדויק.
השיטה הנפוצה ביותר היא תורת ההפרעות עם דיאגרמות פיינמן.
שיטות אחרות הן כרומודינמיקה קוונטית על סריג, תורות קונפורמליות (מתאימות למימד מרחבי אחד).
גדלים רבים בתורות שדה הם אינסופיים, ולכן כל חישוב זקוק לרנורמליזציה, שמעבירה גודל אינסופי לתוך גודל שאינו מדיד, כך שהגודל המדיד ("גודל פיזיקלי") הוא סופי.